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In this note, we solve the Loewner equation in the upper half-plane with forcing
function t(t), for the cases in which t(t) has a power-law dependence on time
with powers 0, 1/2, and 1. In the first case the trace of singularities is a line
perpendicular to the real axis. In the second case the trace of singularities can do
three things. If t(t)=2 `ot, the trace is a straight line set at an angle to the real
axis. If t(t)=2 `o(1 − t), as pointed out by Marshall and Rohde, (12) the
behavior of the trace as t approaches 1 depends on the coefficient o. Our cal-
culations give an explicit solution in which for o < 4 the trace spirals into a
point in the upper half-plane, while for o > 4 it intersects the real axis. We also
show that for o=9/2 the trace becomes a half-circle. The third case with
forcing t(t)=t gives a trace that moves outward to infinity, but stays within
fixed distance from the real axis. We also solve explicitly a more general version
of the evolution equation, in which t(t) is a superposition of the values ± 1.
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1. INTRODUCTION

The Loewner differential equation was introduced by Karl Löwner (11) (who
later changed his name to Charles Loewner) to study properties of uni-
valent functions on the unit disk. The differential equation is driven by a
function that encodes in an ingeneous way continuous curves slitting the
disk from the boundary. A few years ago, Oded Schramm realized that by
taking Brownian motion as the driving function, the Loewner equation
generates families of random curves with a conformally invariant measure,
that he called ‘‘Stochastic Loewner Evolutions’’ (SLE’s). (13) Moreover, he



showed that if the loop-erased random walk has a scaling limit, and if this
scaling limit is conformally invariant, then it must be described by an SLE,
and he made similar conjectures about the scaling limits of uniform span-
ning trees and of critical percolation. The existence of conformally invari-
ant scaling limits and the connections with SLE were established for the
first two models by Lawler, Schramm, and Werner, (9) and for critical site
percolation on the triangular lattice by Smirnov. (14) Over the past few years
Schramm’s idea has been investigated further, mainly in a combined effort
of Lawler, Schramm, and Werner, (5) leading to new developments in the
study of (the scaling limit of ) discrete models.

In SLE an ensemble of driving functions generates an ensemble of
shapes. It is a difficult task to understand fully the relation between these
two ensembles. For this reason we investigate here the simpler problem of
the relation between a driving term in Loewner’s equation and the curve it
generates, by explicit calculation. In particular we study exact, determinis-
tic solutions of Loewner’s equation in the upper half H of the complex
plane. One of the purposes of this study is to present some explicit
examples that may help to elucidate the behavior of the curves generated
by Loewner’s equation. For example, our solution for square-root forcing
in Section 4 shows a transition from a simple curve that stays above the
real line to a curve intersecting the real line, which is similar to the transi-
tion occurring at o=4 in SLE.

To get us started, we need to understand how the Loewner equation
describes curves slitting the half-plane H. So suppose that c(t), t \ 0, is a
simple curve in H emanating from the real line. Then according to con-
formal mapping theory, there exists a unique conformal mapping of the
form w=gt(z) that takes the domain R consisting of all points in H minus
those on the slit c[0, t] onto the upper half of the w-plane, in such a way
that near infinity this map has the expansion

gt(z)=z+c(t)/z+O(1/z2). (1)

See Fig. 1 for a schematic picture of the mapping. It is a theorem that the
coefficient c(t) (which is called the capacity) is continuously increasing
with t. Therefore, the parameterization of the curve can be chosen such
that c(t)=2t, and henceforth we assume that this is the case.

The conformal maps gt satisfy a surprisingly simple differential equa-
tion, which is the Loewner equation

dgt

dt
=

2
gt − t(t)

(2a)
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Fig. 1. This figure shows how a slit c in the z-plane maps into a linear boundary in the
w-plane. Notice that two neighbouring points in the z-plane have images which are far apart
in the w-plane.

with the initial condition

g0=z (2b)

for all z in H. Here, the value of t at time t is just the image of the point
c(t) under the map gt. We call t(t) the driving function or forcing function
of the Loewner equation. It is continuous and real-valued. (For a text-book
discussion of Loewner’s equation and proofs of the above statements when
the domain is the unit disk, see refs. 2 and 4. The half-plane case we are
considering here is analogous and is discussed in refs. 7 and 8.)

Conversely, the Loewner equation (2) has a solution for any given
continuous real-valued function t(t). This generates the function gt(z). For
each value of t this function can be thought of as a mapping of the form
w=gt(z) which takes some connected subset of the upper-half z-plane, R,
into the entire region H above the real axis of the w-plane. Correspond-
ingly, there exists an inverse function ft(w), which obeys gt(ft(w))=w for
all w in the upper half-plane. This function maps the region H of the
w-plane into the region R of the z-plane. It obeys the partial differential
equation

“ft(w)
“t

=−
2

w − t(t)
“ft(w)

“w
. (3)

The Loewner equation continually generates new singular points of gt

that are mapped by gt onto the corresponding points t(t) in the w-plane.
Thus, as time goes on, points are continually removed from R. If t(t) is
sufficiently smooth, (12) these singular points form a simple curve zc(t),
where the points zc(t) obey

gt(zc(t))=t(t). (4)

This curve is called the trace of the Loewner evolution, but we also refer to
it as the line of singularities. (Naturally, if we take t(t) to be the driving
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function corresponding to a given curve c(t) as described above, then zc(t)
will coincide with c(t).)

Equations (2) have a simple scale invariance property under changing
both the scale of space and of time. Any change of time of the form t W a2t
can be compensated by a change of scale. To do this, define a new g and t

by

g̃t(z) :=
1
a

ga
2t(az) and t̃(t)=

1
a

t(a2t). (5)

This pair then satisfies Eq. (2). Note that by the Schwarz reflection prin-
ciple of complex analysis, (1) the map gt extends to the lower half-plane and
satisfies gt(z̄)=gt(z). It follows from Eq. (5) that flipping the sign of the
forcing has the effect of reflecting the regions R and H (and hence also
the line of singularities zc(t)) in the imaginary axis. Likewise, a shift in the
driving function t(t) can be compensated by a similar shift in gt, since the
pair

g̃t(z) :=gt(z − a)+a and t̃(t)=t(t)+a (6)

again solves Eq. (2). This shows that a shift in the driving function simply
produces a shift of the same magnitude in the trace zc(t).

In this note we are interested in the question how the behavior of the
trace is related to that of the driving function. This question can be inves-
tigated both numerically and, in some cases, by exact methods. A simple
numerical method to find the trace generated by a given driving function
t(t), is to numerically integrate Loewner’s equation backwards from the
initial condition gt=t(t) to obtain the value of g0=zc(t). To deal with the
singularity in Loewner’s equation, we can use the first-order approximation

gt=gt − dt+
2 dt

gt − dt − t(t − dt)
. (7)

Substituting gt=t(t) and solving this equation for gt − dt gives an approxi-
mation for the value of g at time t − dt, from where we then integrate
backwards to obtain g0. This method is good enough for the purpose of
producing pictures. The Figs. 3–5 and 7 in this note were obtained in this
way.

Exact solutions of Eq. (2) can be found in a few cases. The simplest
are ones in which the forcing has one of the forms

t(t)=C(1 − t)b (8a)
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or

t(t)=Ctb (8b)

for b=0, 1/2, and 1. For a driving function of the form of Eq. (8b),
a rescaling according to (5) gives the new forcing

t̃(t)=Ca2b − 1tb. (9)

This result allows us to scale away the constant C when b ] 1/2. For the
special value b=1/2 the multiplicative constant can not be scaled away,
and can be important in determining the form of the solution.

In Sections 2, 3, and 4 we shall derive the solutions respectively for the
powers 0, 1, and 1/2. Section 5 contains an explicit construction of the
maps gt for a half-plane slit by an arc, and we point out that this is a
special case of square-root forcing with a finite-time singularity. In Sec-
tion 6 we consider a more general version of Loewner’s equation, where the
forcing is a superposition of the values ± 1 and produces two lines of
singularities.

2. CONSTANT FORCING

Here we look at the almost trivial situation in which b=0 and we can
take

t(t)=A. (10)

This situation is well-known (see, for example, ref. 7 and Appendix A in
ref. 3), but for the sake of completeness we also treat it here. We could of
course shift A away by using Eq. (6), but this case is so easy that shifting is
hardly worth the effort. The equation for g can be solved by inspection,
giving

gt(z)=A+[(z − A)2+4t]1/2. (11)

The inverse map is of the same form as the direct one, namely

ft(w)=A+[(w− A)2 − 4t]1/2. (12)

At time t, the function g acquires a new singularity at the point

zc(t)=A+2it1/2 (13)
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Fig. 2. The trace produced by a constant forcing is a vertical line segment.

which maps under gt to the point t(t)=A in the w-plane. Thus the sin-
gularities form a line segment parallel to the imaginary axis and the
mapped region of the z-plane is the upper half-plane minus that line
segment. The mapping has a singular point at the place where the trace
meets the real axis. We can approach this point z0=A from two different
directions, giving us two different images at the points

w0 ± =A ± 2t1/2. (14)

Figure 2 gives an illustration of the mapping.
Because any smooth enough function t(t) looks locally as if it were

constant, we might expect that smooth t(t)’s generate traces of singularities
which look like simple curves coming up from the real axis. In fact, one can
prove that this statement is correct whenever t(t) is sufficiently smooth so
that it is Hölder continuous with exponent 1/2 and sufficiently small norm,
i.e., so that

lim
s a 0

|t(t − s) − t(t)|
s1/2 < C (15)

for all t and some constant C. The tricky issue is, when can it be that the
curve will touch itself or hit the real line. Condition (15) is enough to
ensure that this will not happen, as was shown by Marshall and Rohde, (12)

who did not give the value of the constant C. Our solution in Section 4
below gives a specific example of the transition occuring at C=4. In a
parallel and independent paper, Lind (10) proves also generally that
Hölder-1/2 functions with coefficients C < 4 generate slits.

3. LINEAR FORCING

The next case, not much harder, has the forcing increase linearly with
time according to

t(t)=t. (16)
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We do not need an additive or multiplicative constant in Eq. (16) because
these can be eliminated by Eqs. (5) and (6). If we now redefine the inde-
pendent variable to be h=g − t, then h obeys

dh
dt

=
2 − h

h
=: −

dh
dF(h)

(17)

where F(h) is the function

F(h)=h+2 ln(2 − h). (18)

In terms of F the solution is

F(h)=−t+c(z). (19)

Here, c(z) is a constant which must be set from the initial condition, g0=z,
giving the solution F(h)=−t+F(z) or equivalently

F(g − t)=F(z) − t. (20)

To find the trajectory of the singularity, use Eqs. (4) and (20) to get

F(zc(t))=F(0)+t=2 ln 2+t. (21)

It is possible to find an explicit expression for this trajectory. To do so,
substitute 2 − zc(t)=rt exp(−ift) into the previous equation. Then split the
equation in its real and imaginary parts to obtain

2 ln rt − rt cos ft=2 ln 2+t − 2, (22a)

rt=2ft/sin ft. (22b)

After substituting the second equation into the first, it can be shown that f

increases monotonously in time from the value f0=0 to f.=p.
In terms of the parameter f, the line of singularities may be written

explicitly as

zc(t)=2 − 2ft cot ft+2ift. (23)

This shows that the line of singularities moves outward to infinity while
remaining within a fixed distance of the real axis. Figure 3 shows the first
part of this trajectory.
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Fig. 3. The shape of the line of singularities in the z-plane that arises from the forcing
t(t)=t, up to time t=100.

For small and large values of t we can also construct asymptotic forms
of the solution (21). As t goes to zero, one can expand F(zc(t)) to third
order in zc(t) and find that, to this order, the result is

zc(t)=2it1/2+2
3 t+O(t3/2). (24)

For large t,

zc(t)=t − 2 ln[(t − 2)/2]+2pi+O(ln t/t). (25)

4. SQUARE-ROOT FORCING

The next case, much more interesting, has the forcing be a square-root
function of time. This case has two subcases: one in which the forcing has a
finite-time singularity based on the rule of Eq. (8a), i.e.,

t(t)=2[o(1 − t)]1/2, t [ 1, o \ 0. (26)

Here, as we shall see, the result changes qualitatively as o varies, with the
critical case being o=4 where the singular curve intersects the real axis. In
the other situation, the forcing has an infinite-time singularity with the rule

t(t)=2[ot]1/2, o \ 0. (27)

In this case zc(t) is just a straight line, as is already clear from the scaling
relation (5).

4.1. Infinite-Time Singularity

To find the solution for the forcing (27), define the new variable
G=g/t1/2 and set y=ln t. Then G satisfies

dG
dy

=−G/2+2/(G − 2o1/2)=
(G − y+)(G − y− )

2(2o1/2 − G)
(28)
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where y± =o1/2 ± (o+4)1/2. It follows that

dG
dy

5 y−

G − y+
−

y+

G − y−

6=
1
2

(y+ − y− ). (29)

Therefore, if we set

H(G) :=
2y+ ln(G − y− ) − 2y− ln(G − y+)

y+ − y−
(30)

then dH(G)/dy=−1 which integrates to

−H(G)=y+c(z)=ln t+c(z). (31)

The constant c(z) can be determined from the observation that in the
limit when t approaches 0,

H(G)+ln t=
2y+ ln(g − y− t1/2) − 2y− ln(g − y+t1/2)

y+ − y−

Q 2 ln z. (32)

Our solution (31) for general t becomes simply

H(g/t1/2)=2 ln(z/t1/2). (33)

Since the line of singularities is determined by the condition that g is equal
to the forcing we get

zc(t)=Bt1/2 where B=exp[1
2 H(2o1/2)]. (34)

More explicitly the coefficient is

B=2 1 (o+4)1/2+o1/2

(o+4)1/2 − o1/2
2

1
2

o1/2

(o+4)1/2
exp 51

2
pi 11 −

o1/2

(o+4)1/2
26 , (35)

so that the line of singularities is set at an angle to the real axis which is

h=
1
2

p 11 −
o1/2

(o+4)1/2
2 . (36)

For o=0 the line is (as we know) perpendicular to the real axis while as
o Q . the angle of intersection becomes smaller and smaller.
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4.2. Finite-Time Singularity

Now we turn to the forcing (26) with a singularity after a finite time.
In this case, one can eliminate the time-dependence by using the new vari-
able

G=g/(1 − t)1/2. (37)

Then G obeys

dG
dy

=G/2+2/(G− 2o1/2) (38)

where y=−ln(1 − t). Once again the derivative becomes a simple function
of the unknown, again appearing in the form of a ratio of polynomials, i.e.,

−
dG
dy

=
(G − y+)(G − y− )

2(2o1/2 − G)
(39)

where this time the roots are y±=o1/2 ± (o − 4)1/2. Notice that now the
roots are real and positive when o \ 4 but that they are complex for o < 4.
Thus we can expect a qualitative change in the solution at o=4.

The integration of the equation proceeds exactly as in the previous
case, giving the solution

H(G)=y+c(z) (40)

where H has the same form as before, but with different y±:

H(G)=
2y+ ln(G − y− ) − 2y− ln(G − y+)

y+ − y−
. (41)

The initial condition then implies that

H(g/(1 − t)1/2)=−ln(1 − t)+H(z) (42)

and the equation for the line of singularities is then

H(2o1/2)=−ln(1 − t)+H(zc(t)). (43)

Note that Eq. (43) for the line of singularities tells us that H(zc(t)) must
approach −. when t approaches 1. In the following subsections we shall
consider the asymptotics of zc(t) in this limit in more detail. We separate
the discussion into the two cases o < 4 and o > 4. Then the section is
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completed with the derivation of the shape of the critical line of singulari-
ties at o=4.

4.2.1. The Logarithmic Spiral for o < 4

When o < 4, the real and imaginary parts of H(z) are

Re H(z)=
o1/2

(4 − o)1/2 Arg(z − y− )+ln |z − y− |

−
o1/2

(4 − o)1/2 Arg(z − y+)+ln |z − y+|, (44a)

Im H(z)=Arg(z − y− ) −
o1/2

(4 − o)1/2 ln |z − y− |

+Arg(z − y+)+
o1/2

(4 − o)1/2 ln |z − y+|, (44b)

from which it follows easily that H(2o1/2) is a positive real constant. Since
the real part of H(zc(t)) must go to −. when t approaches 1, we conclude
that zc(1)=y+, since the other possible candidate for the limit, i.e., y− ,
is in the wrong half-plane. It then follows from the observation that
Im H(zc(t)) must vanish, that the trace must have wrapped around y+ an
infinite number of times. Hence the line of singularities is spiralling in
towards the point y+, as is depicted in Fig. 4.

0

0.5

1.0

1.5

-2.0 -1.5 -1.0 -0.5 0

κ = 4

κ = 3.5

κ = 2.5

κ = 1

Fig. 4. The trace of singularities for square-root forcing with different values of o < 4. Also
shown is the limiting case o=4 where the trace starts to hit the real line. All the curves have
been translated to make them start in the origin at time t=0.
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To find a more explicit expression for the asymptotics, notice that
when zc(t) is close to y+, we can make the approximations

ln |zc(t) − y− | % ln(2(4 − o)1/2) and Arg(zc(t) − y− ) % p/2. (45)

Splitting Eq. (43) in its real and imaginary parts, and substituting the above
approximate values then gives a system of two equations that we can solve
for the unknows ln |zc(t) − y+| and Arg(zc(t) − y+). This gives the result

ln |zc(t) − y+| % [A(o)+(4 − o) ln(1 − t)]/4, (46a)

Arg(zc(t) − y+) % [B(o) − o1/2(4 − o)1/2 ln(1 − t)]/4, (46b)

where the constants are

A(o)=ln 16+(o − 2) ln(4 − o)

+(2 Arg(y+) − p) o1/2(4 − o)1/2, (46c)

B(o)=o1/2(4 − o)1/2 ln(4 − o)

+(p − 2 Arg(y+)) o − 2p. (46d)

Thus, the distance between zc(t) and y+ is decreasing like a power law in t,
whereas the winding number of zc(t) around y+ grows only logarithmically.

4.2.2. The Intersection for o > 4

For o > 4 the real and imaginary parts of H(z) are

Re H(z)=11+
o1/2

(o − 4)1/2
2 ln |z − y− |

+11 −
o1/2

(o − 4)1/2
2 ln |z − y+|, (47a)

Im H(z)=11+
o1/2

(o − 4)1/2
2 Arg(z − y− )

+11 −
o1/2

(o − 4)1/2
2 Arg(z − y+), (47b)

and H(2o1/2) is again a positive real number. This time, as t approaches
one, zc(t) must approach the point y− on the real line, see Fig. 5. In fact,
we can calculate the angle at which the line of singularities intersects the
real line from the observation that Im H(zc(t)) must vanish.
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Fig. 5. For a square-root forcing with o \ 4 the line of singularities intersects the real line at
an angle that varies with o. The curves were translated to make them start in the origin.

Indeed, if we denote by f the angle at which zc(t) hits the real line
(measured from the real line in the positive direction), then we have that in
the limit t Q 1, Arg(zc(t) − y+) Q p whereas Arg(zc(t) − y− ) Q f. The con-
dition Im H(zc(t))=0 then gives

f=p
o1/2 − (o − 4)1/2

o1/2+(o − 4)1/2 (48)

when t goes to 1. As we can see, we have a glancing incidence for o=4 and
o Q ., while for o=9/2 the incidence is perpendicular. In fact we can
prove that for o=9/2 the line of singularities is a half-circle of radius `2.
We will do this in Section 5, where we give an explicit construction of the
conformal maps gt when the half-plane is slit by a half-circle.

4.2.3. The Critical Curve at o=4

It is not difficult to find an explicit expression for the critical line of
singularities at o=4. In this case, the two roots in Eq. (39) are the same,
y± =2, and the equation can be rewritten as

5 2
G − 2

−
4

(G − 2)2
6 dG

dy
=1. (49)

Integration is straightforward and gives

2 ln(G − 2)+
4

G − 2
=−ln(1 − t)+2 ln(z − 2)+

4
z − 2

(50)

where we have determined the integration constant from the initial condi-
tion G0=g0=z. The line of singularities is determined by the condition
that for z=zc(t), G=4.
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Substituting zc(t) − 2=rt exp(ift) and splitting the equation in real
and imaginary parts leads to the expression

zc(t)=2+
sin 2ft

ft
+2i

sin2 ft

ft
(51)

for the critical curve in terms of the parameter f. This parameter f increases
monotonously with time from f0=0 to f1=p.

5. LOEWNER EVOLUTION FOR A GROWING ARC

In this section, we consider the situation where the upper half-plane H

is slit by the curve c(s)=exp(is), s ¥ [0, p). The idea is to construct the
conformal maps that map the half-plane minus the slit c[0, s] back to the
half-plane and have the expansion of Eq. (1). After reparameterizing time
one can then identify the driving function, and verify that the obtained
maps gt satisfy Loewner’s equation. The form of the normalized maps and
of the driving function already appears in Appendix A of ref. 3, but for
completeness we present a short account of the derivation of these results
below. A simple rescaling argument then allows us to make the connection
with Section 4 and prove that the square-root forcing we considered there
generates a half-circle of radius `2 when o=9/2.

To obtain the normalized conformal maps, we start by constructing
the map ks of Fig. 6 as the composition of the three maps depicted there.
The explicit form of this map is

ks(z)=
1
a2

s

as+fs(z)
as − fs(z)

for z ¥ H0c[0, s] (52)

where as :=cos(s/2)−1 and the function fs(z) is given by

fs(z)==1z − 1
z+1

22

+R2
s ==a2

s −
4z

(z+1)2 , (53)

with Rs :=tan(s/2). We can now expand ks for large z, and identify the
capacity c(s). A simple translation will then give us the map satisfying (1).

Expanding ks(z) for large z up to order 1/z gives

ks(z)=z+(2 − 2a−2
s )+(1 − a−4

s )/z+O(1/z2). (54)
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Fig. 6. The construction of the map ks taking H minus the slit c[0, s] onto H, in three
steps. The illustration also tracks the images of the upper half of the unit disk and of the four
‘‘special’’ points −1, 0, c(s), and .. The definitions of c(s), Rs, and as are in the text.

Therefore, the map ks+2a−2
s − 2 has the expansion of Eq. (1), with capa-

city c(s)=1 − a−4
s . The proper time reparameterization that makes the

capacity equal to 2t is given by

2t(s) :=1 − a−4
s =1 − cos4(s/2) for s ¥ [0, p) (55)

which has the inverse

s(t)/2=arc cos((1 − 2t)1/4) for t ¥ [0, 1/2). (56)

The maps gt are then given by gt(z)=ks(t)(z)+2a−2
s(t) − 2. More explicitly,

this can be written in the form

gt(z)=
2(z − 1)2+4z(1 − 2t)1/2+2(z+1) `(z+1)2 − 4z(1 − 2t)1/2

4z
. (57)

We know from Fig. 6 that this map takes the point c(s(t)) onto the image
3a−2

s(t) − 2, which implies that the driving function must be

t(t)=3(1 − 2t)1/2 − 2. (58)

Indeed, one can check by differentiating (57) with respect to time, that gt

satisfies Loewner’s equation with this driving function.
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To make the connection with Section 4, we note that a rescaling of the
form (5) with a=1/`2 turns the driving function into a function of the
form of Eq. (26) with o=9/2, up to a translation. We conclude that this
particular square-root forcing produces a line of singularities that is a half-
circle of radius `2.

We conclude this section with a discussion of its relation to an old
paper by Kufarev. (6) Kufarev considers the equivalent of Loewner’s equa-
tion (2) in the unit disk, and gives an explicit solution of this equation for
negative times. A half-plane version of Kufarev’s example is obtained as
follows. Suppose that we set t(−s)=3 `2s for s \ 0. Then it can be
verified that the solution of (2) at time −s is the normalized map that takes
H onto H minus the half-disk of radius `2s centered at 2 `2s. Observe
that for s=1/2, up to a translation, this solution is just the inverse of (57)
at time t=1/2. This is not a coincidence because generally, if one sets
t(−t) :=t(T − t) and solves Loewner’s equation for both gT and g−T, the
two results are related by g−T=g−1

T .

6. MULTIVALUED FORCING

In this section we look at a special case of the more general version of
Loewner’s equation (appearing for example in ref. 7)

dgt

dt
=F

2
gt − x

dmt(x) (59)

where mt is a measure on the real line that can be time-dependent. Here we
will take mt to be time-independent and assigning a mass pj to the values tj

such that ; j pj=1. Then the equation for g takes the form

dg
dt

=C
j

2pj

g − tj
. (60)

This can be seen as a case where the forcing t(t) is a superposition of
values, and we also believe that this can be described as a case where the
forcing t(t) makes rapid (random) jumps between the values tj.

Equations like (60) are generally easily integrated. Take the specific
case in which the possible values of t are ± 1, which are taken on with
equal probability. Then Eq. (60) becomes

dg
dt

=
2g

g2 − 1
(61)
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which then integrates to give

g2/2 − ln g=2t+z2/2 − ln z. (62)

There are two traces, starting respectively from z=± 1 and then moving
upward towards i.. The traces are found, as before, by setting g equal to
the forcing. Thus the right-hand trace obeys

zc+(t)2 − 2 ln zc+(t)=1 − 4t. (63)

Again we can obtain an explicit expression for the trace, like we did
for the case of linear forcing in Section 3, and for the critical curve in Sec-
tion 4. After substituting zc(t)=rt exp(ift) and splitting the previous
equation in real and imaginary parts, we obtain

zc ± (t)== 2ft

sin(2ft)
(± cos ft+i sin ft) (64)

where f increases with time from the value f0=0 to f.=p/2. Note that
we have filled in the results for both traces, using the fact that they must be
symmetrically placed about the imaginary axis. We can also compute the
asymptotics. For small values of t we obtain

zc±(t)=± 1+i `2t +
1
3 t+O(t3/2) (65)

while for large values of t the traces behave like

zc±(t)=i `(4t − 1) − ln(4t − 1) ±
p

2(4t − 1)1/2+O(ln t/t3/2). (66)

0

1

2

3

4

5

6

-2 -1 0 1 2

Fig. 7. A forcing that is a superposition of the values ± 1 produces two lines of singularities
that approach each other as time goes on. This illustration shows the two lines up to time
t=10.

Exact Solutions for Loewner Evolutions 821



We see that as the traces move upward, they also approach one another, as
is shown in Fig. 7.
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